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Abstract
Learning generative models of unlabelled data
using black-box stochastic variational inference
leads to learning objectives involving intractable
expectations and hence, critically relies on effi-
cient Monte Carlo evaluation of the gradients.
This task is challenging when the approximate
posterior is far from the true posterior, due to
high variance in the gradient estimates. In this
paper, we demonstrate that resampling proposed
samples from the variational posterior which
are assigned low likelihoods by the model (and
hence, unrepresentative of the true posterior) can
improve learning and trade-off extra computation
for accuracy adaptively. We show that explicitly
rejecting samples, while technically challenging
to analyze due to the implicit nature of the result-
ing unnormalized proposal distribution, can have
benefits over the competing state-of-the-art alter-
natives based on multi-sample objectives. We
evaluate the proposed approach and demonstrate
its effectiveness in comparison to state-of-the-
art alternatives both via experiments on synthetic
data and a benchmark density estimation task
with sigmoid belief networks over the MNIST
dataset.

1. Introduction
Black-box stochastic variational learning and inference in
deep generative models with latent variables provides an
effective mechanism for probabilistic reasoning over mas-
sive amounts of unlabelled data (Hoffman et al., 2013; Ran-
ganath et al., 2013). Typically, inference in such models
is amortized by introducing a recognition model that ex-
presses the variational posterior over the latent variables
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conditioned on the observed data (Dayan et al., 1995; Ger-
shman & Goodman, 2014). The generative and recogni-
tion models are commonly parameterized using deep neu-
ral networks which provides expressiveness, but leads to
intractable expectations in the learning objective.

Unless the model and its latent variable space are appropri-
ately reparametrizable (Kingma & Welling, 2014; Rezende
et al., 2014; Titsias & Lázaro-Gredilla, 2014), the general
approach to evaluating and optimizing such intractable ob-
jectives involves Monte Carlo estimation of gradients using
the recognition network as a proposal (Mnih & Rezende,
2016). A simple feed forward network, however, may not
capture the full complexity of the posterior distribution, a
difficulty which shows up in practice as high variance in the
gradient estimates. While prior work has made significant
progress on this issue, for example, (Mnih & Gregor, 2014;
Titsias & Lázaro-Gredilla, 2015; Mnih & Rezende, 2016),
it can often still be a formidable challenge even in simple
cases, as we shall illustrate in this paper.

In this paper, we propose an accept-reject method that ex-
pands the class of distributions representable by the vari-
ational posterior. The probability of accepting a sample
proposed by the recognition network in our framework de-
pends on the likelihood assigned by the generative network.
This leads to an implicit modification of the original vari-
ational posterior to a much richer family of approximating
distributions that can be controlled based on the available
computation. While our proposed framework and analysis
is general, we focus on variational approximations to dis-
crete distributions which are considerably more challeng-
ing since the reparameterization trick is inapplicable.

2. Resampling framework
Consider a generative model with a joint distribution
pθ(x,h) parameterized by θ. Here, x and h denote the
observed and latent variables respectively. Since the true
posterior over the latent variables is intractable, we intro-
duce a variational approximation to the posterior rφ(h|x)
represented by a recognition network and parameterized by
φ. The parameters of the generative model and the recogni-
tion network are learned jointly by optimizing an evidence
lower bound (ELBO) on the marginal log-likelihood of the
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(a) Target distribution (b) T, α, KL :∞, 1, 18 (c) 10, 0.5, 3.1 (d) 0, 0.2, 0.3 (e) −5, 0.01,1e-3

Figure 1. The resampled posterior approximation (b-e) gets closer (in terms of KL divergence) to a target 2D discrete distribution (a) as
we decrease the parameter T , which controls the acceptance probability α. The triples shown are T, α, KL divergence to target.

observed data x,

log pθ(x) ≥ Er
[
log

pθ(x,h)

rφ(h|x)

]
, ELBO(θ, φ). (1)

In the resampling framework, we wish to express the vari-
ational posterior as qθ,φ(h|x) defined implicitly using a
proposal distribution rφ(h|x) (represented by a recognition
network as before) and a factor corresponding to an accep-
tance probability that could depend on both the generative
and the recognition parameters, as aθ,φ(h|x) ∈ (0, 1]. Note
that, unlike p, q, r, aθ,φ(h|x) does not represent a distribu-
tion on the latent variable space h, but simply a probabil-
ity for each h. This results in an approximate posterior,
qθ,φ(h|x) that is proportional to rφ(h|x)aθ,φ(h|x). While
there may be many possibilities for choosing aθ,φ(h|x), in
this paper, we instantiate a specific choice of the acceptance
probability function in conjunction with a scalar “thresh-
old”, T (that could, in general, depend on x). The result-
ing approximate posterior, qθ,φ(h|x, T ) is defined in Algo-
rithm 1.

Algorithm 1 Sampling definition of qθ,φ(h|x, T ), given
pθ(x,h), rφ(h|x), and T .

1: while True do
2: h← sample from proposal rφ(h|x).
3: Compute negative acceptance log probability, λ as:

λ = log(1 + elθ,φ(h|x,T )), where:

lθ,φ(h|x, T ) , log rφ(h|x)− log pθ(x,h)− T

4: Sample uniform: u ∼ U [0, 1].
5: if u < e−λ then
6: Output sample h.
7: end if
8: end while

Within a normalizing constant, the approximate posterior
qθ,φ(h|x, T ) can be characterized as the product of the
proposal distribution, rφ(h|x), with the acceptance prob-
ability, whose negative log likelihood was fixed to be
log(1 + elθ,φ(h|x,T )), i.e., the softplus function applied to
lθ,φ(h|x, T ). We summarize this observation below:

Proposition 1. The approximate posterior, qθ,φ(h|x, T ),
from the sampler defined in Algorithm 1 is given
by γq(h|x, T )/Zq(x, T ) (for fixed x and T ) where
Zq(x, T ) ,

∑
h γq(h|x, T ) is an appropriate normaliza-

tion constant and γq(h|x, T ) is defined via:

log γq(h|x, T ) = log rφ(h|x)− [lθ,φ(h|x, T )]
+ (2)

where lθ,φ(h|x, T ) = log rφ(h|x)− log pθ(x,h)− T and
[∗]+ denotes the softplus function, i.e., log(1 + e∗).

2.1. Approximation Quality Versus Runtime

Informally, the resampling scheme of Algorithm 1 enforces
the following behavior: samples from the approximate pos-
terior that disagree (as measured by the log-likelihoods)
with the target posterior beyond a level implied by the
corresponding threshold have an exponentially decaying
probability of getting accepted, while leaving the remain-
ing samples with negligible interference from resampling.
When the proposed sample h from rφ has a small enough
value according to pθ, it is likely that λ is large (and linear
in the negative log-likelihood assigned by pθ), resulting in
a low acceptance probability. However, when the same is
small, λ is close to 0, resulting in an acceptance probability
close to 1. Therefore, a large value of T recovers the regu-
lar variational inference framework as a special case since
the resulting sampler is identical to rφ(h|x), due to the lack
of any rejections. On the other extreme, for a small value
of T , we get the behavior of a rejection sampler with high
computational cost that is also close to the target distribu-
tion in KL divergence. More formally, we have Theorem 1
which shows that the KL divergence can be improved mono-
tonically by cranking down T . However, a smaller value of
T would require more aggressive rejections and thereby,
more computation.

Theorem 1. For fixed θ, φ, the KL divergence
between the approximate and true posteriors,
KL(qθ,φ(h|x, T )‖pθ(h|x)) is monotone in T . Fur-
thermore, the behavior of the sampler in Algorithm 1
interpolates between the following two extremes:

• As T → +∞, qθ,φ(h|x, T ) approximates rφ(h|x)
with perfect sampling efficiency.
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• As T → −∞, qθ,φ(h|x, T ) approximates pθ(h|x),
with the sampling efficiency equivalent to a naive re-
jection sampler.

This phenomenon is illustrated in Figure 1 where we ap-
proximate an example 2D discrete target distribution on a
5×5 grid, with a uniform proposal distribution plus resam-
pling. With no resampling (T = ∞), the approximation is
far from the target. Figure 1 demonstrates progressive im-
provement in the posterior quality as T is reduced (both
visually as well as via an estimate of the KL divergence
from approximation to the target), along with an increasing
computation cost reflected in the lower acceptance proba-
bilities.

2.2. The Resampled ELBO (R-ELBO)

We may now consider optimizing the evidence lower-
bound on the log-likelihood corresponding to the implicit
resampled posterior, qθ,φ(h|x, T ), rather than the usual ob-
jective corresponding to the original unmodified proposal
distribution, rφ(h|x). To avoid confusion with the latter,
we refer to this modified tighter objective function as the
“resampled ELBO” or R-ELBO, defined below,

log pθ(x) ≥ R-ELBO , Eq
[
log

pθ(x,h)Zq(x, T )

γq(h|x, T )

]
(3)

where γq and Zq were defined in Proposition 1. Alterna-
tively, we can express the R-ELBO as,

R-ELBO = log pθ(x)− KL(qθ,φ(h|x, T )‖pθ(h|x)). (4)

Using Eq. (4) and Theorem 1, we get the corollary below.
Corollary 1. The R-ELBO gets tighter by decreasing T
(but more expensive to compute).

Even though the R-ELBO expression has an unknown
constant Zq , its gradients can be written as the covari-
ance of two random variables that are a function of the
latent variables sampled from the approximate posterior
qθ,φ(h|x, T ). Hence, we only need access to samples from
q for learning, which can be done using Monte Carlo, anal-
ogous to the usual ELBO gradients. For this, a general-
ization of the usual ELBO gradients to arbitrary unnormal-
ized proposal distributions is necessary, which is done via
Lemma 1 in the appendix. The resulting R-ELBO gradients
are summarized below in Theorem 2.
Theorem 2. Consider the R-ELBO for qθ,φ(h|x, T ) from
Eqs. (3), (4). Let COVq(A(h), B(h)) denote the covariance
of the two random variables A(h) and B(h), where h is
sampled from the distribution q. Then, the R-ELBO gradi-
ents with respect to θ and φ are given by:

• ∇φR-ELBO(θ, φ) =
COVq (Aθ,φ(h|x, T ), Bθ,φ(h|x, T )), where:

Aθ,φ(h|x, T ) , log pθ(x,h) − log rφ(h|x) −
[lθ,φ(h|x, T )]+, and Bθ,φ(h|x, T ) ,
(1− σ(lθ,φ(h|x, T )))∇φ log rφ(h|x))

• ∇θR-ELBO(θ, φ) = Eq [∇θ log pθ(x,h)] −
COVq (Aθ,φ(h|x, T ), σ(lθ,φ(h|x, T ))∇θ log pθ(x,h)).

To compute an unbiased Monte Carlo estimate of the co-
variance, we need to subtract the mean of at least one ran-
dom variable while forming the product term. To do this,
we process a fixed batch of (accepted) samples per gradient
update, and for each sample, use all-but-one to compute the
mean estimate to be subtracted, a trick reminiscent of, and
inspired by the local learning signals proposed in Mnih &
Rezende (2016) (see Sec. 2.5.3 in the paper for details).

3. Related work
For continuous distributions, there are several works that
attempt to improve the variational approximation to the
posterior. A few prominent ones include normalizing flow
models (Rezende et al., 2014; Kingma et al., 2016), Hamil-
tonian variational inference (Salimans et al., 2015), aux-
iliary generative models (Maaløe et al., 2016). Variance
reduction is largely achieved through the reparameteriza-
tion trick for location-scale family of distributions (Kingma
& Welling, 2014; Rezende et al., 2014; Titsias & Lázaro-
Gredilla, 2014). Recently, Naesseth et al. (2017) proposed
to use an accept-reject method to extend the reparameteri-
zation trick to the gamma and Dirichlet distributions.

Prior work for the case of discrete variational distributions
is relatively scarce. NVIL (Mnih & Gregor, 2014) uses
REINFORCE (Williams, 1992) with baselines to reduce
the variance in gradient estimates. On the theoretical side,
random projections of the posterior distribution have been
shown to provide tight bounds on the quality of the varia-
tional approximation (Grover & Ermon, 2016). Hierarchi-
cal variational models impose a prior over the latent vari-
ables to induce dependencies between the variables (Ran-
ganath et al., 2016). Recently, the concrete distribution was
proposed to obtain low variance gradients through a contin-
uous relaxation of the discrete distribution using Gumbel
variables (Maddison et al., 2016; Jang et al., 2016).

A common theme for learning both discrete and contin-
uous variational distributions is the use of multi-sample
objectives. Such objectives were first proposed by Raiko
et al. (2015) for structured prediction. Burda et al. (2016)
showed that the multi-sample objectives are in fact tighter
lower bounds on the log-likelihood and used similar objec-
tives for training variational autoencoders with continuous
latent units. Finally, VIMCO extended the same to discrete
latent variable models (Mnih & Rezende, 2016). Similar to
our proposed framework, multi-sample objectives permit a
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computational-statistical trade-off by varying the number
of samples used to compute the Monte Carlo estimate. We
compare the two approaches in detail in the experiments.

4. Experiments
The setup and hyperparameter details for the experiments
beyond those mentioned below are described in Appendix.

4.1. Diagnostic experiments

Consider a discrete 1-D target distribution, pλ∗,c,ε(h), illus-
trated in Figure 2, with support h ∈ {0, 1, . . .}, obtained by
forcing a negligible mass, ε → 0, 0 ≤ h < c on Poi(λ∗),
a Poisson distribution with rate λ∗ > 0. We focus solely
on the dynamics of learning a variational parameter φ, and
consider θ , λ∗, c, ε as fixed for simplicity. The approx-
imate proposal is parameterized as rφ , Poi(eφ), where
φ is an unconstrained scalar, and denotes a (unmodified)
Poisson distribution with the (non-negative) rate parame-
ter, eφ. Note that for Poi(eφ) to explicitly represent a small
mass on h < c would require φ → ∞. As a result, {rφ}
does not contain candidates close to the target distribution
in the sense of KL divergence, even while it may be possible
to approximate well with a simple resampling modification
that transforms the raw proposal rφ into a better candidate.

Figure 2. Target distribution, p,
with rate λ∗ = 10, c = 5, ε =
1e−20.

Figure 3. Acceptance probabil-
ity at each SGD iteration

In Figures 3 and 4 we illustrate the performance of our ap-
proach for an example setting (details in appendix). Fig-
ure 3 shows the efficiency of the sampler automatically im-
proving as the learning progresses. Figure 4a shows the dif-
ference between the current parameter φ and the known op-
timal φ∗ = log λ∗ quickly converging to 0 as learning pro-
ceeds. As a benchmark, we also evaluated VIMCO, which
optimizes a multi-sample version of the ELBO. Figure 5
suggests that the signal in gradients is too low (i.e., high
variance in gradient estimates), as a possible cause of the
observed behavior with VIMCO, which was persistent with
much smaller learning rates and large sample sizes com-
pared to resampling. One explanation is that the VIMCO
gradient update for φ has a term that assigns the same av-
erage weight to the entire batch of samples, both good and
bad ones (see Eq.(8) in Mnih & Rezende (2016)). By con-

(a) Error: φ− φ∗ (b) Gradients for φ.

Figure 4. Resampling learning dynamics. The x-axis shows the
effective sample size (ess), which includes both accepted and re-
jected samples at each SGD iteration.

(a) Error: φ− φ∗. (b) Gradients for φ.

Figure 5. VIMCO learning dynamics. The x-axis shows the ef-
fective sample size (ess), which is equal to k times the number of
iterations at each SGD iteration.

trast, Algorithm 1 discards rejected sample proposals from
contributing to the gradients explicitly. Yet another qual-
itative aspect that distinguishes our approach from typical
multi-sample objectives is that Algorithm 1 can adapt the
effective sample size dynamically based on current sample
quality, as opposed to being fixed in advance.

Table 1. Test NLL (in nats) for MNIST. NVIL results from Mnih
& Gregor (2014), VIMCO results from Mnih & Rezende (2016).

SBN Architecture 200-200-200
NVIL 96.7
VIMCO (k=5) 92.8
VIMCO (k=10) 92.6
Resampled-SBN 91.9

4.2. MNIST benchmark experiments

We preformed density estimation by training sigmoid be-
lief networks using the R-ELBO objective on the bi-
narized MNIST dataset. We compare the proposed
Resampled-SBN with NVIL (Mnih & Gregor, 2014) and
VIMCO (Mnih & Rezende, 2016), described in Section 3.
The results are shown in Table 1. To keep computation
budget roughly the same when comparing against VIMCO,
we report results corresponding to thresholds where the av-
erage acceptance probability of the Resampled-SBN is be-
tween 0.05 and 0.10. As we can see, Resampled-SBN per-
forms favorably compared to the other competing methods.
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5. Conclusion
We proposed a resampling framework for variational infer-
ence and learning in generative models that is theoretically
principled and allows for flexible trade-off between com-
putation and statistical accuracy by improving the qual-
ity of the variational approximation made by any param-
eterized model. We demonstrated the practical benefits of
our framework over competing alternatives based on multi-
sample objectives. In the future, we would want to ex-
tend this for tasks beyond density estimation and also to
exploit the factorization structure in sparse graphical mod-
els/layered networks for better efficiency. Yet another di-
rection involves combining the proposed approach with
multi-sample objectives.
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Appendix

A. Proofs of theoretical results
A.1. Proposition 1

Proof. The probability of an accepted sample is propor-
tional to the product of proposing it and accepting it, which
is given by rφ(h|x)e−[lθ,φ(h|x,T )]+ . Taking logarithms fin-
ishes the proof.

A.2. Theorem 1

Proof. We can explicitly write down the acceptance prob-
ability function as,

aθ,φ(h|x, T ) = e−[lθ,φ(h|x,T )]+

=
eT pθ(x,h)

eT pθ(x,h) + rφ(h|x)

From the above equation, it is easy to see that as T → ∞,
we get an acceptance probability close to 1, resulting in
an approximate posterior close to the original proposal,
rφ(h|x), whereas with T → −∞, the acceptance probabil-
ity degenerates to a standard rejection sampler with accep-
tance probability close to eT pθ(x,h)

rφ(h|x) , but with potentially
untenable efficiency. Intermediate values of T can interpo-
late between these two extremes.

To prove monotonicity, we first derive the partial derivative
of the KL divergence with respect to T as a covariance of
two random variables that are monotone transformations
of each other. To get the derivative, we use the fact that the
gradient of the KL divergence is the negative of the ELBO
gradient derived in Theorem 1. Recall that the ELBO and
the KL divergence add up to a constant independent of T ,
and that the expressions for the gradients with respect to T
and φ are functionally the same. We have,

∇T KL(q‖p) = −COVq (A(h),∇T log γq(h)) ,

where,

A(h) = log pθ(x,h)− log γq(h)

= log pθ(x,h)− log rφ(h|x)

+ [log rφ(h|x)− log pθ(x,h)− T ]
+

= [lθ,φ(h|x, T )]+ − lθ,φ(h|x, T )− T.

For the second term in the covariance, we can use the ex-
pression from Proposition 1 to write,

∇T log γq(h) = −∇T [lθ,φ(h|x, T )]+

= −σ(lθ,φ(h|x, T ))∇T lθ,φ(h|x, T )

= σ(lθ,φ(h|x, T )),

where σ(x) , 1/(1+e−x) is the sigmoid function. Putting
the two terms together, we have,

∇T KL(q‖p) = −COVq([lθ,φ(h|x, T )]+

− lθ,φ(h|x, T )− T, σ(lθ,φ(h|x, T ))).

To prove that the two random variables, [lθ,φ(h|x, T )]+ −
lθ,φ(h|x, T )−T and σ(lθ,φ(h|x, T )) are a monotone trans-
formation of each other, we can use the identity [x]+−x =
log(1+ex)−x = − log σ(x) to rewrite the final expression
for the gradient of the KL divergence as,

∇T KL(q‖p) = COVq (log σ(lθ,φ(h|x, T )) + T, σ(lθ,φ(h|x, T )))

The inequality follows from the fact that the covariance of
a random variable and a monotone transformation (the log-
arithm in this case) is non-negative.

A.3. Theorem 2

Before proving Theorem 2, we first state and prove an im-
portant lemma.

Lemma 1. Suppose p(x) = γp(x)/Zp and q(x) =
γq(x)/Zq are two unnormalized distributions, where only
q depends on φ (the recognition network parameters), but
both p and q can depend on θ. 1 Let A(x) , log γp(x) −
log γq(x). Then the variational lower bound objective (on
logZp) and its gradients with respect to the parameters
θ, φ are given by,

ELBO(θ, φ) , Eq [A(x)] + logZq

∇φELBO(θ, φ) = COVq (A(x),∇φ log γq(x))

∇θELBO(θ, φ) = Eq [∇θ log γp(x)]

+ COVq (A(x),∇θ log γq(x)) .

Note that the covariance is the expectation of the product
of (at least one) mean-subtracted version of the two ran-
dom variables. Further, we can also write, KL(q||p) =

log
(
Eq
[
e−Ā(x)

])
, where Ā(x) , A(x) − Eq [A(x)] is

the mean subtracted version of the learning signal, A(x).

Proof. The equation for the ELBO follows from the defi-
nition. For the gradients, we can write,∇φELBO(θ, φ) =
D2 −D1 +D3, where

D1 = ∇φEq [log γq(x)]

D2 = ∇φEq [log γp(x)]

D3 = ∇φ logZq

1The dependence for q on θ can happen via some resampling
mechanism that is allowed to, for example, evaluate γp on the
sample proposals before making its accept/reject decisions, as in
our case.
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where,

D1 = ∇φEq [log γq(x)]

=
∑
x

∇φ [q(x) log γq(x)]

=
∑
x

(
q(x)

γq(x)
∇φγq(x) + log γq(x)∇φq(x)

)
=

1

Zq
∇φZq +

∑
x

q(x) log γq(x)∇φ log q(x)

= D3 + Eq [log γq(x)∇φ log q(x)]

D2 = ∇φEq [log γp(x)]

= ∇φ
∑
x

q(x) log γp(x)

=
∑
x

log γp(x)∇φq(x)

=
∑
x

log γp(x)q(x)∇φ log q(x)

= Eq [log γp(x)∇φ log q(x)]

which implies,

∇φELBO(θ, φ) = D2 − (D1 −D3)

= Eq [(log γp(x)− log γq(x))∇φ log q(x)] .

Next, observe that Eq [∇φ log q(x)] = 0, Therefore, us-
ing the fact that the expectation of the product of two
random variables is the same as their covariance when at
least one of the two random variables has a zero mean, we
get ∇φELBO(θ, φ) = COVq (A(x),∇φ log q(x)). Next
note that we can add an arbitrary constant to either ran-
dom variable without changing the covariance, therefore
this is equal to COVq (A(x),∇φ log q(x)−∇φ logZq) =
COVq (A(x),∇φ log γq(x)).

The derivation for the gradient with respect to θ is anal-
ogous, except for D2, which has an additional term
Eq [∇θ log γp(x)] which did not appear in the gradient with
respect to φ because of our assumption on the lack of de-
pendence of log γp(x) on the recognition parameters φ. For
the identity on the KL divergence, we have,

KL(q||p) = logZp − logZq + Eq [log γq(x)− log γp(x)]

= log

(∑
x

γp(x)

Zq

)
+ Eq [log γq(x)− log γp(x)]

= log

(
Eq
[
γp(x)

γq(x)

])
+ Eq [log γq(x)− log γp(x)]

= log
(
Eq
[
e−A(x)

])
+ Eq [A(x)]

= log
(
Eq
[
e−Ā(x)

])
.

Using the above lemma, we provide a proof for Theorem 2
below.

Proof. We apply the result of Theorem 1, which computes
the ELBO corresponding to the two unnormalized distribu-
tions on the latent variable space h (for fixed x, T ), with
log γp(.) , log pθ(h,x) and log γq(.) , log rφ(h|x) −
[lθ,φ(h|x, T )]

+. This gives: ∇φR-ELBO(θ, φ) =
COVq (Aθ,φ(h|x, T ),∇φ log γq(h)). We can then evaluate
∇φ log γq(h) = (1− σ(lθ,φ(h|x, T )))∇φ log rφ(h|x),
where σ() is the sigmoid function. Note that this is a
consequence of the fact that the derivative of the softplus,
log(1+ex), is the sigmoid function, 1/(1+e−x). Similarly
for the θ gradient, we get,

∇θR-ELBO(θ, φ) = Eq [∇θ log pθ(x,h)]

+ COVq (Aθ,φ(h|x, T ),∇θ log γq(h))

where,

∇θ log γq(h) = ∇θ [lθ,φ(h|x, T )]
+

= σ(lθ,φ(h|x, T ))∇θlθ,φ(h|x, T )

= −σ(lθ,φ(h|x, T ))∇θ log pθ(x,h).

B. Experimental details
B.1. Synthetic

The target distribution was set with an optimal parameter
φ∗ = log(10.0) (i.e. the rate parameter is 10.0), and c = 5.
The optimizer used was SGD with momentum with and
mass 0.5. For resampling, plots show results with learning
rate set to 0.01 and T = 50 For VIMCO, plots show results
with learning rate set to 0.005 and k = 100.

B.2. MNIST

We consider a 50,000/10,000/10,000 train/validation/test
split of the binarized MNIST dataset. For a direct compar-
ison with prior work, both the generative and recognition
networks have the same architecture of stochastic layers.
No additional deterministic layers were used. The batch
size was 50, the optimizer used is Adam with a learning
rate of 3e-4. We updated the resampling thresholds after
every 100,000 iterations to correspond to acceptance of the
top 95 percentile, i.e. only the bottom 5% of the samples
were rejected. The lower bounds on the test set are calcu-
lated based on importance sampling with 25 samples.


